Chapter 17 - From Gene to Protein

• Overview: The Flow of Genetic Information
 • The information content of DNA is in the form of specific sequences of nucleotides
 • The DNA inherited by an organism leads to specific traits by dictating the synthesis of proteins
 • Proteins are the links between genotype and phenotype
 • Gene expression, the process by which DNA directs protein synthesis, includes two stages: transcription and translation

17.1: Basic Principles of Transcription and Translation

• RNA is the intermediate between genes and the proteins for which they code
• Transcription is the synthesis of RNA under the direction of DNA
• Transcription produces messenger RNA (mRNA)
• Translation is the synthesis of a polypeptide, which occurs under the direction of mRNA
• Ribosomes are the sites of translation
• In prokaryotes, mRNA produced by transcription is immediately translated without more processing
• In a eukaryotic cell, the nuclear envelope separates transcription from translation
• Eukaryotic RNA transcripts are modified through RNA processing to yield finished mRNA
• A primary transcript is the initial RNA transcript from any gene
• The central dogma is the concept that cells are governed by a cellular chain of command: DNA → RNA → protein

• The Genetic Code
 – How are the instructions for assembling amino acids into proteins encoded into DNA?
 – There are 20 amino acids, but there are only four nucleotide bases in DNA

• How many bases correspond to an amino acid?
 – Codons: Triplets of Bases
• The flow of information from gene to protein is based on a **triplet code**: a series of nonoverlapping, three-nucleotide words

• These triplets are the smallest units of uniform length that can code for all the amino acids

 – During transcription, one of the two DNA strands called the **template strand** provides a template for ordering the sequence of nucleotides in an RNA transcript

 • During translation, the mRNA base triplets, called **codons**, are read in the 5’ to 3’ direction

 – Each codon specifies the amino acid to be placed at the corresponding position along a polypeptide

 – Codons along an mRNA molecule are read by translation machinery in the 5’ to 3’ direction

 – Each codon specifies the addition of one of 20 amino acids

• **Cracking the Code**

 – All 64 codons were deciphered by the mid-1960s

 • Of the 64 triplets, 61 code for amino acids; 3 triplets are “stop” signals to end translation

 – The genetic code is redundant but not ambiguous; no codon specifies more than one amino acid

 – Codons must be read in the correct **reading frame** (correct groupings) in order for the specified polypeptide to be produced

• **Evolution of the Genetic Code**

 – The genetic code is nearly universal, shared by the simplest bacteria to the most complex animals

 – Genes can be transcribed and translated after being transplanted from one species to another

17.2: Transcription is the DNA-directed synthesis of RNA: a closer look

 – Transcription, the first stage of gene expression, can be examined in more detail

 • Three types of RNA:

 • Ribosomal RNA (rRNA)
• Transfer RNA (tRNA)
• Messenger RNA (mRNA)

• Molecular Components of Transcription
 – RNA synthesis is catalyzed by RNA polymerase, which pries the DNA strands apart and hooks together the RNA nucleotides
 – RNA synthesis follows the same base-pairing rules as DNA, except uracil substitutes for thymine
 – The DNA sequence where RNA polymerase attaches is called the promoter; in bacteria, the sequence signaling the end of transcription is called the terminator
 • The stretch of DNA that is transcribed is called a transcription unit

• Go to the animation of Transcription (you can access this with the chapter materials on the website. The visual helps a great deal!

• Synthesis of an RNA Transcript
 – The three stages of transcription:
 • Initiation
 • Elongation
 • Termination
 – Elongation of the RNA Strand
 • As RNA polymerase moves along the DNA, it untwists the double helix, 10 to 20 bases at a time
 • Transcription progresses at a rate of 40 nucleotides per second in eukaryotes
 • A gene can be transcribed simultaneously by several RNA polymerases
 – Termination of Transcription
 • The mechanisms of termination are different in bacteria and eukaryotes
 • In bacteria, the polymerase stops transcription at the end of the terminator
 • In eukaryotes, the polymerase continues transcription after the pre-mRNA is cleaved from the growing RNA chain; the polymerase eventually falls off the DNA
17.3: Eukaryotic cells modify RNA after transcription

- Enzymes in the eukaryotic nucleus modify pre-mRNA before the genetic messages are dispatched to the cytoplasm.
- During RNA processing, both ends of the primary transcript are usually altered.
- Also, usually some interior parts of the molecule are cut out, and the other parts spliced together.

Alteration of mRNA Ends
- Each end of a pre-mRNA molecule is modified in a particular way:
 - The 5' end receives a modified nucleotide 5' cap.
 - The 3' end gets a poly-A tail.
- These modifications share several functions:
 - They facilitate the export of mRNA.
 - They protect mRNA from hydrolytic enzymes.
 - They help ribosomes attach to the 5' end.

Split Genes and RNA Splicing
- Most eukaryotic genes and their RNA transcripts have long noncoding stretches of nucleotides that lie between coding regions.
- These noncoding regions are called intervening sequences, or introns.
- The other regions are called exons because they are eventually expressed, usually translated into amino acid sequences.
- RNA splicing removes introns and joins exons, creating an mRNA molecule with a continuous coding sequence.

The Functional and Evolutionary Importance of Introns
- Some genes can encode more than one kind of polypeptide, depending on which segments are treated as exons during RNA splicing.
- Such variations are called alternative RNA splicing.
- Because of alternative splicing, the number of different proteins an organism can produce is much greater than its number of genes.
Proteins often have a modular architecture consisting of discrete regions called domains.

- In many cases, different exons code for the different domains in a protein.
- Exon shuffling may result in the evolution of new proteins.

17.4: Translation is the RNA-directed synthesis of a polypeptide: *a closer look*

- Once the mRNA strand undergoes editing and modification of the ends 5’ cap and poly-A tail, the mRNA leaves the nucleus and translation can begin.

Molecular Components of Translation

- A cell translates an mRNA strand into protein with the help of transfer RNA (tRNA)
- Molecules of tRNA are not identical:
 - Each carries a specific amino acid on one end
 - Each has an anticodon on the other end; the anticodon base-pairs with a complementary codon on mRNA
- Watch the Bioflix animation of protein synthesis. The file will be included in the post for chapter 17.

The Structure and Function of Transfer RNA

- A tRNA molecule consists of a single RNA strand that is only about 80 nucleotides long
- Flattened into one plane to reveal its base pairing, a tRNA molecule looks like a cloverleaf
- Because of hydrogen bonds, tRNA actually twists and folds into a three-dimensional molecule
- tRNA is roughly L-shaped

Accurate translation requires two steps:

- First: a correct match between a tRNA and an amino acid, done by the enzyme aminoacyl-tRNA synthetase
- Second: a correct match between the tRNA anticodon and an mRNA codon
 - Flexible pairing at the third base of a codon is called *wobble* and allows some tRNAs to bind to more than one codon

Ribosomes
Ribosomes facilitate specific coupling of tRNA anticodons with mRNA codons in protein synthesis.

- The two ribosomal subunits (large and small) are made of proteins and ribosomal RNA (rRNA).
- A ribosome has three binding sites for tRNA:
 - The P site holds the tRNA that carries the growing polypeptide chain.
 - The A site holds the tRNA that carries the next amino acid to be added to the chain.
 - The E site is the exit site, where discharged tRNAs leave the ribosome.

Building a Polypeptide

- The three stages of translation:
 - Initiation
 - Elongation
 - Termination
 - All three stages require protein “factors” that aid in the translation process.

Ribosome Association and Initiation of Translation

- The initiation stage of translation brings together mRNA, a tRNA with the first amino acid, and the two ribosomal subunits.
- First, a small ribosomal subunit binds with mRNA and a special initiator tRNA.
- Then the small subunit moves along the mRNA until it reaches the start codon (AUG).
- Proteins called initiation factors bring in the large subunit that completes the translation initiation complex.

Elongation of the Polypeptide Chain

- During the elongation stage, amino acids are added one by one to the preceding amino acid.
- Each addition involves proteins called elongation factors and occurs in three steps: codon recognition, peptide bond formation, and translocation.

Termination of Translation
– Termination occurs when a stop codon in the mRNA reaches the A site of the ribosome
 • The A site accepts a protein called a release factor
 • The release factor causes the addition of a water molecule instead of an amino acid
 • This reaction releases the polypeptide, and the translation assembly then comes apart
• Watch the Translation animation. On the website with the C17 materials.
• Polyribosomes
 – A number of ribosomes can translate a single mRNA simultaneously, forming a polyribosome (or polysome)
 – Polyribosomes enable a cell to make many copies of a polypeptide very quickly
• Completing and Targeting the Functional Protein
 – Often translation is not sufficient to make a functional protein
 – Polypeptide chains are modified after translation
 – Completed proteins are targeted to specific sites in the cell
 – Protein Folding and Post-Translational Modifications
 • During and after synthesis, a polypeptide chain spontaneously coils and folds into its three-dimensional shape
 • Proteins may also require post-translational modifications before doing their job
 • Some polypeptides are activated by enzymes that cleave them
 • Other polypeptides come together to form the subunits of a protein
• Targeting Polypeptides to Specific Locations
 – Two populations of ribosomes are evident in cells: free ribosomes (in the cytosol) and bound ribosomes (attached to the ER)
 • Free ribosomes mostly synthesize proteins that function in the cytosol
 • Bound ribosomes make proteins of the endomembrane system and proteins that are secreted from the cell
 • Ribosomes are identical and can switch from free to bound
• Polypeptide synthesis always begins in the cytosol

• Synthesis finishes in the cytosol unless the polypeptide signals the ribosome to attach to the ER

17.5: Point mutations can affect protein structure and function

• **Mutations** are changes in the genetic material of a cell or virus

 – **Point mutations** are chemical changes in just one base pair of a gene

 • The change of a single nucleotide in a DNA template strand can lead to the production of an abnormal protein

 • Types of Point Mutations

 • Point mutations within a gene can be divided into two general categories

 • Base-pair substitutions

 • Base-pair insertions or deletions

 • **Substitutions**

 • A base-pair substitution replaces one nucleotide and its partner with another pair of nucleotides

 • Silent mutations have no effect on the amino acid produced by a codon because of redundancy in the genetic code

 • Missense mutations still code for an amino acid, but not necessarily the right amino acid

 • Nonsense mutations change an amino acid codon into a stop codon, nearly always leading to a nonfunctional protein

 • **Insertions and Deletions**

 • Insertions and deletions are additions or losses of nucleotide pairs in a gene

 • These mutations have a disastrous effect on the resulting protein more often than substitutions do

 • Insertion or deletion of nucleotides may alter the reading frame, producing a **Frameshift mutation**
• Mutagens
 – Spontaneous mutations can occur during DNA replication, recombination, or repair
 – **Mutagens** are physical or chemical agents that can cause mutations

17.6: While gene expression differs among the domains of life, the concept of a gene is universal

• Archaea are prokaryotes, but share many features of gene expression with eukaryotes
 – These processes are very similar across all living organisms – thus DNA →RNA→Protein is the central dogma of Biology.
 – Comparing Gene Expression in Bacteria, Archaea, and Eukarya
 – **Bacteria** can simultaneously transcribe and translate the same gene because both processes occur in the cytoplasm
 – In **eukarya** (Animals, Plants, Fungi and Protists), transcription and translation are separated by the nuclear envelope. There is pre-mRNA editing and post transcriptional editing of the protein produced.

• In archaea, transcription and translation are likely coupled

• **What Is a Gene? Revisiting the Question**
 – The idea of the gene itself is a unifying concept of life

• We have considered a gene as:
 – A discrete unit of inheritance
 – A region of specific nucleotide sequence in a chromosome
 – A DNA sequence that codes for a specific polypeptide chain

• In summary, a gene can be defined as a region of DNA that can be expressed to produce a final functional product, either a polypeptide or an RNA molecule

Review - You should now be able to:

1. Briefly explain how information flows from gene to protein
2. Compare transcription and translation in bacteria and eukaryotes
3. Explain what it means to say that the genetic code is redundant and unambiguous
4. Include the following terms in a description of transcription: mRNA, RNA polymerase, the promoter, the terminator, the transcription unit, initiation, elongation, termination, and introns.

5. Include the following terms in a description of translation: tRNA, wobble, ribosomes, initiation, elongation, and termination.